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Probability distribution of the conductance in anisotropic systems
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We investigate the probability distributionp(g) of the conductanceg in anisotropic two-dimensional sys-
tems. The scaling procedure applicable to mapping the conductance distributions of localized anisotropic
systems to the corresponding isotropic one can be extended to systems at the critical point of the metal-to-
insulator transition. Instead of the squares used for isotropic systems, one should use rectangles for the
anisotropic ones. At the critical point, the ratio of the side lengths must be equal to the square root of the ratio
of the critical values of the quasi-one-dimensional scaling functions. For localized systems, the ratio of the side
lengths must be equal to the ratio of the localization lengths.
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The presence of disorder1 may allow a system to make
transition from metallic to insulating behavior by varying th
Fermi energy in an energy range where both extended
localized states are found, separated by a mobility ed
Characterizing this transition, one can employ transp
properties, such as the conductance, or properties of the
tem’s eigenstates, such as the correlation length for exten
metallic states or the localization lengthj for insulating
states. At the mobility edge, a determination of the comp
probability distributionp(g) of the conductanceg ~in units
of e2/h) is needed. The critical point of the transition fro
metallic states to Anderson localized ones2 is of particular
interest. The distributions are well known to be normal a
log-normal off the mobility edge towards the extended a
the localized regime, respectively, whereas the exact form
the critical distribution is still under investigation.3–10 For
example, contrary to expectations, the critical distribut
seems to vary even within the same universality class,
pending on the boundary conditions perpendicular to the
rection in which transport occurs.3–5 Also, questions abou
the exact form of the large-g tail (g.1) remain unanswered
Where calculations in 21« dimensions6 indicate higher cu-
mulants to diverge with system size, leading to a power
tail, numerical calculations7 in three dimensions and analyt
cal results for quasi-one-dimensional wires5 show an expo-
nential decay.

Anisotropic systems have recently been the focus of p
ticular attention.11–16 It is generally accepted that anisotrop
does not change the universality class and that isotropic
sults can be recovered by performing a proper scaling of
anisotropic results. For anisotropic systems in a locali
state, it is reasonable to assume that scaling the dimens
of the system by the corresponding localization lengths w
make the system effectively isotropic. This procedure
been applied successfully11 to the scaling functionL
5lM /M , which is a function ofj/M , wherelM denotes the
finite size localization length of a quasi-one-dimensio
strip of finite width M and lM→j as M→`. It was also
shown17 that the same scaling procedure works for the pr
ability distribution in such a system.

In order to test the approach for critical states one m
either face the numerical challenge of large thre
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dimensional systems or take into account additional inter
tions ~beyond the disorder potential! such as spin-orbit
coupling.18 Another possibility is the introduction of externa
magnetic fields as, e.g., in integer quantum Hall systems19 or
tight-binding models with random magnetic flux.20 However,
as a result of Anderson localization, extended states do
exist in two-dimensional systems of noninteracting electro
in a magnetic field, except at a singular energy near the c
ter of each of the Landau subbands. At these critical ener
Ec the localization lengthj diverges with a critical exponen
n: j}uE2Ecu2n.

Because significant finite size effects have to be expec
we decided to concentrate our research on two-dimensi
systems, although the exact form of the critical distributi
of the conductance depends on the dimensionality of
system.7 The investigation of the self-averaging quantityj in
integer quantum Hall systems yielded very encourag
results,15 supporting the expectation that quantities of anis
tropic systems can indeed be mapped to isotropic values
simple rescaling scheme.

In this paper, we show a method of mapping the proba
ity distributions of the conductance of anisotropic tw
dimensional systems with a magnetic field perpendicula
the plane or with spin-orbit coupling to the probability di
tribution of the conductance for the corresponding isotro
system at the critical point, using a tight-binding model.
turns out that the ratio of the squares of the side leng
Lx , Ly of the anisotropic system should be chosen equa
the ratio of the critical valuesLx

c , Ly
c of the quasi-one-

dimensional scaling functions:

Lx
2

Ly
2

5
Lx

c

Ly
c
. ~1!

In the following, we first describe the models and the n
merical method we employed. Then we present and disc
our numerical results and finally summarize the conclusi
of this work.

The tight-binding model uses the Hamiltonian

H5(
n,t

unt&«n^ntu1 (
n,t,n8,t8

unt&Vn,n8^n8t8u, ~2!
©2001 The American Physical Society03-1
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wheren,n8 denotes the lattice site. Without spin-orbit inte
action the ‘‘variables’’t,t8 take on only one value and th
hopping integralsVn,n8 are scalar, otherwise they are 232
matrices and the spin variables take on the values 1 or21.
In either case the site energies«n are independent oft and
we take into account interactions only between neighbor
lattice sites.

An external magnetic field enters the Hamiltonian via
vector potentialA (“3A5B), which appears in the phase
of the hopping integrals:

Vn,n85tn,n8
0 expS 22p i ~e/h!E

rn

rn8
A~r !dr D . ~3!

The integral connects the lattice sitesn ~at rn) andn8 ~at rn8)
in a straight line. For the systems under consideration, wh
the magnetic inductionB is perpendicular to the plane of th
two-dimensional lattice, the gauge for the vector poten
can be chosen such that the phases vanish in the dire
perpendicular toA and are integer multiples of some numb
2pa in the direction parallel toA. The value of the param
eter a then completely characterizes the influences of
magnetic field on the system. For rationala, the denomina-
tor determines the number of bands in the density of state
the system without disorder.

The Evangelou–Ziman model21 incorporates spin-orbi
coupling by using the following hopping integrals:

Vn,n8
t,t85tn,n8

0 Fdt,t81m i(
n

st,t8
n tn,n8

n G , ~4!

wheren5x, y, z, andsn are the Pauli matrices. The param
eterm characterizes the strength of the spin-orbit interacti

Both systems may be made anisotropic by choosing
value of t0 to be different in the two directions within th
plane. Otherwise this parameter is a constant, independe
lattice siten. We bring disorder to the system by choosing
the site energies independently from a rectangular distr
tion of width W centered at 0, so thatW is a measure of the
strength of the disorder. The parameterstn are also randomly
selected from a uniform distribution on@21/2,1/2#. The en-
ergy scale is set by the larger of the two values fort0, which
is taken to be unity.

We calculate the conductance from the Landa
formula22

g5Tr~ t†t ! ~5!

where t is the transmission matrix. We suppose two sem
infinite leads are attached to opposite sides of the sam
Thent determines the transmission of an electron through
sample. The numerical procedure is based on the algorit
published by Ando23 and by Pendryet al.23

The critical conductance distributions we calculated
isotropic quantum Hall systems at different disord
strengths show that finite-size effects become stronger
weaker the disorder. Where systems withW54.0 andW
52.0 show a basically size-independent critical distribut
of the conductance for squares of 64364 lattice sites, atW
50.5 finite-size effects are still somewhat noticeable up
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systems with 1923192 lattice sites. The anisotropic quantu
Hall systems we investigated are characterized bya5 1

8 . The
anisotropies we chose weretx

0/ty
050.5 at W50.5 andtx

0/ty
0

50.8 atW50.1. The latter was chosen mainly because
already had the data for the quasi-one-dimensional sca
function. As the disorder is even weaker than in the first ca
finite-size effects are even stronger, and even at 2403240
lattice sites the conductance distribution is far from the o
we expect from our calculations of isotropic systems. The
fore, we will not be able to show that our procedure maps
two anisotropic conductance distributions to the critical d
tribution of isotropic systems for this extreme case. We w
however, be able to prove the somewhat weaker claim
our method transforms the two anisotropic distributions
that both have the same shape. In a square system, on
pects that the distribution in the difficult hopping directio
shows a more localized character than the one in the e
hopping direction. In an isotropic system, the distributi
obviously cannot depend on the direction of transport.
making the system rectangular rather than square,
shorter in the difficult hopping direction, it should be po
sible to obtain distributions in the two directions that are t
same, thus making the anisotropic system effectively beh
isotropically.

The task now is ‘‘How do we choose the correct ratio
side lengths of the rectangle?’’ From the research on lo
ized systems11,17 we know that in those cases, the rat
should be equal to the ratio of the localization lengths:

S Lx

jx
5

Ly

jy
⇒ D Lx

Ly
5

jx

jy
~6!

for localized systems, as these are obviously the approp
length scales in their respective directions. This is of no
for critical systems as both localization lengths diverge at
transition. A closely correspondingnondiverging quantity is,
however, available in the scaling functionLM5lM /M ,
which has a finite critical value, independent of the syst
width M. The finite-size localization lengthslM ,x and lM ,y
havejx andjy , respectively, as their large-M limits, and for
large enough systems we can approximate Eq.~6! by

Lx

Ly
5

lM ,x

lM ,y
~7!

for localized systems at ‘‘large enough’’M. The meaning of
M in this context would be that of the system width perpe
dicular to the direction in which the localization length
measured, i.e.,M5Ly in lM ,x andM5Lx in lM ,y . Now, by
multiplying both sides of Eq.~7! by Lx /Ly we have

Lx
2

Ly
2

5
Lx

lM ,y

lM ,x

Ly
5

LM ,x

LM ,y
~8!

for large localized systems. NowLM is a continuous func-
tion of E and for large enough systems atEc should have
reached its critical value. Therefore, we arrive at the conc
sion that
3-2
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Lx

Ly
5ALx

c

Ly
c

~9!

should be the correct ratio for critical systems in order
make them behave like isotropic ones. Noting t
relationship9,13,17

ALx
cLy

c5L iso
c ~10!

we can write Eq.~9! in the alternate form

Lx

Ly
5

Lx
c

L iso
c

5
L iso

c

Ly
c

. ~11!

We tested this prediction on the system withtx
0/ty

050.5
and W50.5, where the ratioALx

c/Ly
c is roughly 1.5. The

result is shown in Fig. 1 together with the critical distributio
for the isotropic system. The agreement is very good. For
other system withtx

0/ty
050.8 andW50.8, we have to dea

with stronger finite-size effects and cannot expect to
proach the form of the critical distribution we see in Fig.
for reasonable system sizes. Instead we merely show in
2 how the critical distributions change with the ratio of si
lengths. The best value for the ratio according to Eq.~9!
would be roughly 1.23. Figure 2 shows results for ratios
1.0, 1.25, and 1.5. The averages of ln(g) for the easy hopping
direction decrease with increasing ratio from24.09 for the
square to24.40 and25.30, while the averages for the di
ficult hopping direction increase from24.94 for the square
to 24.18 and24.03. Similarly, the standard deviations in
crease for the easy hopping direction from 1.90 for
square to 2.07 and 2.30, while they decrease for the diffi
hopping direction from 2.24 for the square to 2.01 and 1.
The values for a ratio of 1.25 are not equal but reasona
close, so that for larger systems, where a ratio of 1.23 m
be practicable, we expect a better agreement of the two p
ability distributions.

FIG. 1. The conductance distributions of an anisotropic rect
gular system with a ratio of side lengths chosen according to
~9!. For comparison the corresponding distribution of an isotro
system is shown as well.
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Taking the best-ratio rectangle as the ‘‘undeformed’’ ba
we can also see from Fig. 2 that similar ‘‘deformations’’ ha
similar effects in the two directions, that is, reducing the ra
by a factorg in one direction will cause the ensemble ave
age ^ ln(g)& in that direction to increase, and the standa
deviation to decrease, while the trend is opposite in the p
pendicular direction. However, reducing the ratio by t
same factorg in the other direction will result roughly in the
same distributions as before, but with the one associated
the easy direction before now assigned to the difficult dir
tion andvice versa.

That the same procedure also works for systems w
spin-orbit coupling is shown in Fig. 3, where we plot th
conductance distribution for an isotropic system withm
51.0 atE50.1 andWc56.7 together with that of two an

-
q.
c FIG. 2. Conductance distributions of an anisotropic system
varying ratios of the side lengths. The left panels refer to transp
in the easy hopping direction, the right panels to transport in
difficult hopping direction. The ratio of side lengths is 1.0 for th
top row, 1.25 for the middle row, and 1.5 for the bottom row.

FIG. 3. The conductance distributions for an isotropic and t
anisotropic systems with spin-orbit coupling.
3-3
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isotropic systems, one withm51.0 and tx
0/ty

050.1 at E
50.1 andWc51.6, the other withm51.0 andtx

0/ty
050.2 at

E50.1 andWc52.6. The ratio of sidelengths, according
Eq. ~9!, should be 23.0 for the latter. We chose 40340 lattice
sites for the isotropic system, 103230 lattice sites for the
strongly anisotropic one, and 203185 lattice sites for the
anisotropic system with the weaker anisotropy. Again
agreement is very good.

We have shown that the scaling procedure applicable
mapping the conductance distributions of localized ani
tropic systems to the corresponding isotropic one can be
tended in a straightforward manner to systems at the crit
point of the Anderson localization-delocalization transiti
ep

v

n

k-
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in both unitary and symplectic two-dimensional systems.
stead of the squares used for isotropic systems, one sh
use rectangles for the anisotropic ones, with a ratio of s
lengths equal to the square root of the ratio of the criti
values of the quasi-one-dimensional scaling function.
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